Brief Contents

Chapter 1 Coulomb’s Laws and Electric Field
Chapter 2 Electric Flux and Gauss’s Law
Chapter 3 Electric Potential
Chapter 4 Capacitor and Capacitance
Appendix A1 Miscellaneous Assignments and Archives on Chapters 1-4
Chapter 5 Electric Current and Circuits
Chapter 6 Electrical Measuring Instruments
Chapter 7 Heating Effects of Current
Chapter 8 Faraday’s Law and Lenz’s Law
Chapter 9 Magnetics
Chapter 10 Alternating Current
Appendix A2 Miscellaneous Assignments and Archives on Chapters 5-10
Appendix A3 Solutions to Concept Application Exercises
Contents

Chapter 1 Coulomb's Laws and Electric Field 1.1
Electric Charge 1.2
Charging of a Body 1.2
Work Function of a Body 1.3
Charging by Friction 1.3
Charging by Conduction 1.3
Charging by Induction 1.3
Properties of Electric Charge 1.3
Quantization of Charge 1.3
Conservation of Charge 1.3
Additivity of Charge 1.4
Charge is Invariant 1.4
Coulomb's Law 1.6
Coulomb's Law in Vector Form 1.6
Superposition Principle 1.7
Electric Field 1.12
How to Measure Electric Field 1.13
Electric Field Intensity E 1.13
Lines of Force 1.16
Properties of Electric Lines of Force 1.17
Different Patterns of Electric Field Lines 1.17
Field of Ring Charge 1.18
Field of Uniformly Charged Disk 1.21
Field of Two Oppositely Charged Sheets 1.22
Electric Dipole 1.25
Electric Field due to a Dipole 1.26
Electric Field Intensity due to an Electric Dipole at a Point on the Axial Line 1.26
Electric Field Intensity due to an Electric Dipole at a Point on the Equatorial Line 1.26
Electric Field Intensity due to a Short Dipole 1.27
Dipole at Some General Point 1.28
Net Force on a Dipole in a Non-Uniform Field 1.28
Dipole in a Uniform Electric Field 1.29
Solved Examples 1.33
Exercises 1.33
Subjective Type 1.36
Objective Type 1.46
Multiple Correct Answers Type 1.46
Assertion-Reasoning Type 1.41
Comprehension Type 1.42
Matching Column Type 1.44
Answers and Solutions 1.45
Subjective Type 1.51
Objective Type 1.57
Multiple Correct Answers Type 1.57
Assertion-Reasoning Type 1.57
Comprehension Type 1.57
Matching Column Type 1.66

Chapter 2 Electric Flux and Gauss's Law 2.1
Electric Flux 2.2
Gauss's Law 2.6
Field of a Charged Conducting Sphere 2.7
Selection of Gaussian Surface 2.7
Electric Field Outside the Sphere 2.7
Electric Field Inside the Sphere 2.8
Field of a Line Charge 2.8
Selection of Gaussian Surface 2.8
Field of an Infinite Plane Sheet of Charge 2.8
Selection of Gaussian Surface 2.8
Field at the Surface of a Conductor 2.9
Field of a Uniformly Charged Sphere 2.9
Selection of Gaussian Surface 2.9
Electric Field Inside the Sphere 2.9
Electric Field due to a Long Uniformly Charged Cylinder 2.10
Electric Field Near Uniformly Charged Plane 2.10
Field Inside the Plane 2.10
Appendix 2.11
Chapter 3 Electric Potential

Electric Potential and Energy
Electric Potential Energy of Two Point Charges
Electron-Volt
Electric Potential
Equipotential Surface
Relation Between Electric Field and Potential
Finding Electric Field from Electric Potential
Electric Potential of Some Continuous Charge Distributions
A Charged Conducting Sphere
A Non-Conducting Solid Sphere
A Uniform Line of Charge
A Ring of Charge
A Charged Disk
Potential due to an Electric Dipole
Work Done in Rotating an Electric Dipole
Dipole in a Uniform Electric Field
Potential Energy of an Electric Dipole
In a Uniform Electric Field
Solved Examples
Exercises

Chapter 4 Capacitor and Capacitance

Capacitor
Units of Capacitance
Parallel Plate Capacitor
Capacitance of a Spherical Conductor or Capacitor
Energy Stored in a Charged Conductor or Capacitor
Force Between the Plates of a Parallel Plate Capacitor
Energy Density (Energy Per Unit Volume) in Electric Field
Loss of Energy During Redistribution of Charge
Combination of Capacitors
Capacitors Connected in Series
Energy in Series Combination
Capacitors Connected in Parallel
Energy in Parallel Combination
Kirchhoff's Rules for Capacitors
Sign Convention
Dielectric
Dielectric Constant
Dielectric in an Electric Field
Induced Charge on the Surface of Dielectric
Dielectric Breakdown
Capacity of Parallel Plate Capacitor with Dielectric
Force on Dielectric Slab at Constant Potential Difference
Effect of Dielectric on Different Parameters
Spherical Capacitor
Cylindrical Capacitor
Solved Examples
Exercises

Solved Examples
Exercises
Subjective Type
Objective Type
Multiple Correct Answers Type
Assertion-Reasoning Type
Comprehension Type
Matching Column Type
Answers and Solutions
Subjective Type
Objective Type
Multiple Correct Answers Type
Assertion-Reasoning Type
Comprehension Type
Matching Column Type
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application of Ampere's Law</td>
<td>9.38</td>
</tr>
<tr>
<td>Solved Examples</td>
<td>9.44</td>
</tr>
<tr>
<td>Exercises</td>
<td>9.54</td>
</tr>
<tr>
<td>Subjective Type</td>
<td>9.54</td>
</tr>
<tr>
<td>Objective Type</td>
<td>9.56</td>
</tr>
<tr>
<td>Multiple Correct Answers Type</td>
<td>9.81</td>
</tr>
<tr>
<td>Assertion-Reasoning Type</td>
<td>9.86</td>
</tr>
<tr>
<td>Comprehension Type</td>
<td>9.88</td>
</tr>
<tr>
<td>Matching Column Type</td>
<td>9.96</td>
</tr>
<tr>
<td>Archives</td>
<td>9.99</td>
</tr>
<tr>
<td>Answers and Solutions</td>
<td>9.106</td>
</tr>
<tr>
<td>Subjective Type</td>
<td>9.106</td>
</tr>
<tr>
<td>Objective Type</td>
<td>9.111</td>
</tr>
<tr>
<td>Multiple Correct Answers Type</td>
<td>9.131</td>
</tr>
<tr>
<td>Assertion-Reasoning Type</td>
<td>9.137</td>
</tr>
<tr>
<td>Comprehension Type</td>
<td>9.138</td>
</tr>
<tr>
<td>Matching Column Type</td>
<td>9.145</td>
</tr>
<tr>
<td>Archives</td>
<td>9.148</td>
</tr>
</tbody>
</table>

Chapter 10 Alternating Current 10.1

- Alternative Current and Voltage 10.2
- Phasor Diagrams 10.2
- Average or Mean Value of Alternating Current 10.3
- Root Mean Square (rms) Values 10.3
- Resistance and Reactance 10.4
- Resistor in an AC Circuit 10.5
- Inductor in an AC Circuit 10.5
- Meaning of Inductive Reactance 10.5
- Capacitor in an AC Circuit 10.6
- Caution 10.6
- Meaning of Capacitive Reactance 10.7
- Resistor And Capacitor in an AC Circuit 10.7
- Comparing AC Circuit Elements 10.7
- L-R-C Series Circuit 10.8
- Meaning of Impedance and Phase Angle 10.9
- Power in Alternating-Current Circuits 10.12
- Power in a Resistor 10.12
- Power in a General AC Circuit 10.12
- Choke Coil 10.13
- Circuit Behavior at Resonance 10.13
- Transformers 10.14
- How Transformers Work 10.14

Exercises

- Subjective Type 10.15
- Objective Type 10.16
- Multiple Correct Answers Type 10.23
- Assertion-Reasoning Type 10.24
- Comprehension Type 10.24
- Matching Column Type 10.26
- Answers and Solutions 10.27
 - Subjective Type 10.27

Appendix A2 Miscellaneous Assignments and Archives on Chapters 5-10

A2.1

- Exercises
 - Objective Type A2.2
 - Multiple Correct Answers Type A2.15
 - Assertion-Reasoning Type A2.19
 - Comprehension Type A2.21
 - Matching Column Type A2.25
 - Archives A2.26
- Answers and Solutions A2.31
 - Objective Type A2.31
 - Multiple Correct Answers Type A2.41
 - Assertion-Reasoning Type A2.45
 - Comprehension Type A2.46
 - Matching Column Type A2.49
 - Archives A2.75

Appendix A3 Solutions to Concept Application

A3.1

- Exercises
 - Objective Type 10.31
 - Multiple Correct Answers Type 10.35
 - Assertion-Reasoning Type 10.35
 - Comprehension Type 10.46
 - Matching Column Type 10.43
Since the time the IIT-JEE (Indian Institute of Technology Joint Entrance Examination) started, the examination scheme and the methodology have witnessed many a change. From the lengthy subjective problems of 1950s to the matching column type questions of the present day, the paper-setting pattern and the approach have changed. A variety of questions have been framed to test an aspirant’s calibre, aptitude, and attitude for engineering field and profession. Across all these years, however, there is one thing that has not changed about the IIT-JEE, i.e., its objective of testing an aspirant’s grasp and understanding of the concepts of the subjects of study and their applicability at the grass-root level.

No subject can be mastered overnight; nor can a subject be mastered just by formulae-based practice. Mastering a subject is an expedition that starts with the basics, goes through the illustrations that go on the lines of a concept, leads finally to the application domain (which aims at using the learnt concept(s) in problem-solving with accuracy) in a highly structured manner.

This series of books is an attempt at coming face-to-face with the latest IIT-JEE pattern in its own format, which is going to be highly advantageous to an aspirant for securing a good rank. A thorough knowledge of the contemporary pattern of the IIT-JEE is a must. This series of books features all types of problems asked in the examination—be it MCQs (one or more than one correct), assertion-reason type, matching column type, or paragraph-based, thought-type questions. Not discounting the need for skilled and guided practice, the material in the book has been enriched with a large number of fully solved concept-application exercises so that every step in learning is ensured for the understanding and application of the subject.

This whole series of books adopts a multi-faceted approach to mastering concepts by including a variety of exercises asked in the examination. A mix of questions helps stimulate and strengthen multi-dimensional problem-solving skills in an aspirant. Each book in the series has a sizeable portion devoted to questions and problems from previous years’ IIT-JEE papers, which will help students get a feel and pattern of the questions asked in the examination. The best part about this series of books is that almost all the exercises and problem have been provided with not just answers but also solutions.

Overall the whole content of the book is an amalgamation of the theme of physics with ahead-of-time problems, which an aspirant must follow to accomplish success in IIT-JEE.

B. M. SHARMA