Brief Contents

UNIT I: OPTICS
Chapter 1 Geometrical Optics
Chapter 2 Wave Optics

UNIT II: MODERN PHYSICS
Chapter 3 Photoelectric Effect
Chapter 4 Atomic Physics
Chapter 5 Nuclear Physics
Appendix Solutions to Concept Application Exercises
Contents

UNIT I: OPTICS

Chapter 1: Geometrical Optics

1.1 Nature of Image Formed by a Convex Mirror
1.2 Nature of Image Formed by a Concave Mirror
1.3 Relation Between Object and Image Velocity
1.4 Some Experiments With Curved Mirror
1.5 Refraction of Light
1.6 Laws of Refraction
1.7 Deviation of a Ray Due to Refraction
1.8 Principle of Reversibility of Light Rays
1.9 Vector Representation of a Light Ray
1.10 Critical Angle and Total Internal Reflection
1.11 Graph Between Angle of Deviation (δ) and Angle of Incidence (ι)
1.12 Conditions of Total Internal Reflection
1.13 Apparent Shift of an Object Due to Refraction
1.14 Refraction Through a Parallel Slab
1.15 Lateral Displacement of Emergent Beam Through a Glass Slab
1.16 Refraction Across Multiple Slabs
1.17 Slab and Mirror Combined
1.18 Refraction in a Medium With Variable Refractive Index
1.19 Measurement of Refractive Index of a Liquid by a Travelling Microscope
1.20 Prism
1.21 Condition of No Emergence
1.22 Condition of Grazing Emergence
1.23 Condition of Maximum Deviation
1.24 Condition of Minimum Deviation
1.25 Thin Prisms
1.26 Dispersion of Light
1.27 Deviation Without Dispersion
1.28 Dispersion Without Deviation

Chapter 2: Refraction of Light

2.1 Introduction
2.2 Some Definitions
2.3 Nature of Objects and Images
2.4 Types of Objects
2.5 Types of Images
2.6 Basic Laws
2.7 Reflection of Light
2.8 Regular Reflection
2.9 Diffused Reflection
2.10 Laws of Reflection
2.11 Reflection From a Plane Surface: Plane Mirror
2.12 Image Formation From Plain Mirror
2.13 Image of Extended Object Formed by Plane Mirror
2.14 Relation Between Velocity of Object and Image
2.15 Images Formed by Two Plane Mirrors
2.16 Locating All The Images Formed by Two Plane Mirrors
2.17 Reflection From a Curved Surface
2.18 Spherical Mirrors
2.19 Important Terms
2.20 Sign Convention: Cartesian Convention
2.21 Rules for Ray Diagrams
2.22 Position, Size and Nature of Image Formed by Spherical Mirrors
2.23 Mirror Formula
2.24 Image Formation in Convex Mirror
2.25 Magnification
2.26 Magnification From a Concave Mirror
2.27 Magnification From a Convex Mirror
Contents

Refraction at Spherical Surfaces 1.52
Lateral Magnification for Refracting Spherical Surface 1.52
Thin Lens 1.56
Lenses:maker's Formula 1.57
Thin Lens Formula 1.57
Methods for Determining Focal Length of a Convex Lens 1.57
Graphical Method 1.57
Power of a Lens 1.60
Lenses Displacement Method 1.62
Lenses With Different Media on Either Side 1.63
Lenses Placed Very Close to Each Other 1.65
Cut Lens 1.66
Lenses Placed at a Distance from Each Other 1.67
Silvered Lens 1.70
Lenses With One Silvered Surface 1.71
Concept of Image Forming at Object Itself 1.73
Combination of Lenses and Mirrors 1.75
Finding Focal Length of a Convex Lens 1.77
Measurement of Refractive Index of Liquid by a Convex Lens 1.77
Optical Instrument 1.80
Microscopes 1.80
Telescopes 1.81
Lens Camera 1.81
Solved Examples 1.82
Exercises 1.89
Subjective Type 1.89
Objective Type 1.91
Multiple Correct Answers Type 1.108
Assertion-Reasoning Type 1.111
Comprehension Type 1.112
Matching Column Type 1.119
Integer Answer Type 1.121
Archives 1.122
Answers and Solutions 1.130
Subjective Type 1.130
Objective Type 1.134
Multiple Correct Answers Type 1.157
Assertion-Reasoning Type 1.161
Comprehension Type 1.162
Matching Column Type 1.169
Integer Answer Type 1.172
Archives 1.173

Chapter 2 Wave Optics 2.1

Huygens' Wave Theory 2.2
Wavefronts 2.2
Huygens' Construction 2.3
Principle of Linear Superposition 2.4
Conditions of Interference 2.5
Coherent Sources 2.5
Interference 2.5
Thin-Film Interference 2.10
Young's Double-Slit Experiment 2.13
Position of Bright and Dark Fringes in YDSE 2.14
Fringe Width 2.15
Maximum Order of Interference Fringes 2.16
Shape of Interference Fringes in YDSE 2.19
Young's Double-Slit Experiment With White Light 2.19
Different Cases in Young's Double-Slit Experiment 2.20
Rays Not Parallel to Principal Axis 2.20
Source Placed Beyond the Central Line 2.21
Geometrical and Optical Paths 2.22
Optical Path 2.22
Dispersion of Fringes 2.23
Fresnel's Biprism 2.27
Lloyd's Mirror Experiment 2.28
Change of Phase Due to Reflection 2.28
Solved Examples 2.29
Exercises 2.35
Subjective Type 2.35
Objective Type 2.36
Multiple Correct Answers Type 2.47
Assertion-Reasoning Type 2.50
Comprehension Type 2.51
Matching Column Type 2.60
Integer Answer Type 2.62
UNIT II: MODERN PHYSICS

Chapter 3 Photoelectric Effect

Quantum Theory of Light

Properties of Photons

Photon Counts Emitted by a Source Per Second

Intensity of Light Due to a Light Source

Photon Flux

Photon Density in a Light Beam

Force Exerted by a Light Beam on a Surface

Radiation Pressure/Force

Matter Waves (de Broglie Waves)

Properties of Matter Waves

Application of de Broglie Wave Hypothesis

Electron Emission

Photoelectric Cell

Applications of Photoelectric Cell

Photoelectric Effect

Study of Photoelectric Effect

Einstein’s Photoelectric Equation

Laws of Photoelectric Effect

Failure of Classical Wave Theory of Light to Explain the Laws of Photoelectric Effect

Solved Examples

Exercises

Subjective Type

Objective Type

Multiple Correct Answers Type

Chapter 4 Atomic Physics

Thomson’s Atomic Model

Bohr Model of the Hydrogen Atom

Radius of Orbit

Velocity of Electron in nth Orbit

Orbital Frequency of Electron

Energy of Electron in nth Orbit

Frequency of Emitted Radiation

Bohr Model to Define Hypothetical Atomic Energy Levels

Hydrogen-like Atoms

Ionization Energy (I.E.) and Ionization Potential (I.P.)

Excitation Energy and Excitation Potential

Binding Energy or Separation Energy

Atomic Excitation

Limitations of Bohr’s Atomic Model

Wavelength of Photon Emitted in De-excitation

Hydrogen Spectrum

Origin of Spectra

Emission Spectra

Absorption Spectra

Effect of Nucleus Motion on Energy of Atom

Effect of Mass of Nucleus on Bohr Model
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective Type</td>
<td>5.67</td>
</tr>
<tr>
<td>Multiple Correct Answers Type</td>
<td>5.77</td>
</tr>
<tr>
<td>Assertion-Reasoning Type</td>
<td>5.79</td>
</tr>
<tr>
<td>Comprehension Type</td>
<td>5.79</td>
</tr>
<tr>
<td>Matching Column Type</td>
<td>5.82</td>
</tr>
<tr>
<td>Integer Answer Type</td>
<td>5.83</td>
</tr>
<tr>
<td>Archives</td>
<td>5.83</td>
</tr>
<tr>
<td>Appendix Solutions to Concept Application</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td>A.1</td>
</tr>
</tbody>
</table>

Multiple Correct Answers Type	5.49
Assertion-Reasoning Type	5.51
Comprehension Type	5.51
Matching Column Type	5.55
Integer Answer Type	5.56
Archives	5.56
Answers and Solutions	5.61
Subjective Type	5.61
Preface

While the paper-setting pattern and assessment methodology have been revised many times over and newer criteria devised to help develop more aspirant-friendly engineering entrance tests, the need to standardize the selection processes and their outcomes at the national level has always been felt. A combined national-level engineering entrance examination has finally been proposed by the Ministry of Human Resource Development, Government of India. The Joint Entrance Examination (JEE) to India’s prestigious engineering institutions (IITs, IITDs, NITs, ISM, IISERs, and other engineering colleges) aims to serve as a common national-level engineering entrance test, thereby eliminating the need for aspiring engineers to sit through multiple entrance tests.

While the methodology and scope of an engineering entrance test are prone to change, there are two basic objectives that any test needs to serve:

1. The objective to test an aspirant’s caliber, aptitude, and attitude for the engineering field and profession.
2. The need to test an aspirant’s grasp and understanding of the concepts of the subjects of study and their applicability at the grassroots level.

Students appearing for various engineering entrance examinations cannot bank solely on conventional shortcut measures to crack the entrance examination. Conventional techniques alone are not enough as most of the questions asked in the examination are based on concepts rather than on just formulae. Hence, it is necessary for students appearing for joint entrance examination to not only gain a thorough knowledge and understanding of the concepts but also develop problem-solving skills to be able to relate their understanding of the subject to real-life applications based on these concepts.

This series of books is designed to help students get an all-round grasp of the subject so as to be able to make its useful application in all its contexts. It uses a right mix of fundamental principles and concepts, illustrations which highlight the application of these concepts, and exercises for practice. The objective of each book in this series is to help students develop their problem-solving skills/accuracy, the ability to reach the crux of the matter, and the speed to get answers in limited time. These books feature all types of problems asked in the examination—be it MCQs (one or more than one correct), assertion-reason type, matching column type, comprehension type, or integer type questions. These problems have skillfully been set to help students develop a sound problem-solving methodology.

Not discounting the need for skilled and guided practice, the material in the book has been enriched with a number of fully solved concept application exercises so that every step in learning is ensured for the understanding and application of the subject. This whole series of books adopts a multi-faceted approach to mastering concepts by including a variety of exercises asked in the examination. A mix of questions helps stimulate and strengthen multi-dimensional problem-solving skills in an aspirant.

It is imperative to note that this book would be as profound and useful as you want it to be. Therefore, in order to get maximum benefit from this book, we recommend the following study plan for each chapter.

Step 1: Go through the entire opening discussion about the fundamentals and concepts.

Step 2: After learning the theory/concept, follow the illustrative examples to get an understanding of the theory/concept.

Overall, the whole content of the book is an amalgamation of the theme of physics with ahead-of-time problems, which equips the students with the knowledge of the field and paves a confident path for them to accomplish success in the JEE.

With best wishes!

B.M. Sharma